High-throughput alternative splicing detection using dually constrained correspondence analysis (DCCA)

نویسندگان

  • Florent Baty
  • Dirk Klingbiel
  • Francesco Zappa
  • Martin H. Brutsche
چکیده

Alternative splicing is an important component of tumorigenesis. Recent advent of exon array technology enables the detection of alternative splicing at a genome-wide scale. The analysis of high-throughput alternative splicing is not yet standard and methodological developments are still needed. We propose a novel statistical approach-Dually Constrained Correspondence Analysis-for the detection of splicing changes in exon array data. Using this methodology, we investigated the genome-wide alteration of alternative splicing in patients with non-small cell lung cancer treated by bevacizumab/erlotinib. Splicing candidates reveal a series of genes related to carcinogenesis (SFTPB), cell adhesion (STAB2, PCDH15, HABP2), tumor aggressiveness (ARNTL2), apoptosis, proliferation and differentiation (PDE4D, FLT3, IL1R2), cell invasion (ETV1), as well as tumor growth (OLFM4, FGF14), tumor necrosis (AFF3) or tumor suppression (TUSC3, CSMD1, RHOBTB2, SERPINB5), with indication of known alternative splicing in a majority of genes. DCCA facilitates the identification of putative biologically relevant alternative splicing events in high-throughput exon array data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

dSpliceType: A Multivariate Model for Detecting Various Types of Differential Splicing Events Using RNA-Seq

Alternative splicing plays a key role in regulating gene expression. Dysregulated alternative splicing events have been linked to a number of human diseases. Recently, the high-throughput RNA-Seq technology provides unprecedented opportunities and holds a strong promise for better characterizing and dissecting alternative splicing events on a whole transcriptome scale. Therefore, efficient and ...

متن کامل

High-throughput alternative splicing quantification by primer extension and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

Alternative splicing is a significant contributor to transcriptome diversity, and a high-throughput experimental method to quantitatively assess predictions from expressed sequence tag and microarray analyses may help to answer questions about the extent and functional significance of these variants. Here, we describe a method for high-throughput analysis of known or suspected alternative splic...

متن کامل

Model-based detection of alternative splicing signals

MOTIVATION Transcripts from approximately 95% of human multi-exon genes are subject to alternative splicing (AS). The growing interest in AS is propelled by its prominent contribution to transcriptome and proteome complexity and the role of aberrant AS in numerous diseases. Recent technological advances enable thousands of exons to be simultaneously profiled across diverse cell types and cellul...

متن کامل

Genome-Wide Detection of Alternative Splicing in Expressed Sequences Using Partial Order Multiple Sequence Alignment Graphs

We present a method for high-throughput alternative splicing detection in expressed sequence data. This method effectively copes with many of the problems inherent in making inferences about splicing and alternative splicing on the basis of EST sequences, which in addition to being fragmentary and full of sequencing errors, may also be chimeric, misoriented, or contaminated with genomic sequenc...

متن کامل

rMAPS: RNA map analysis and plotting server for alternative exon regulation

RNA-binding proteins (RBPs) play a critical role in the regulation of alternative splicing (AS), a prevalent mechanism for generating transcriptomic and proteomic diversity in eukaryotic cells. Studies have shown that AS can be regulated by RBPs in a binding-site-position dependent manner. Depending on where RBPs bind, splicing of an alternative exon can be enhanced or suppressed. Therefore, sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical informatics

دوره 58  شماره 

صفحات  -

تاریخ انتشار 2015